Public Safety Interoperability Meeting FCC, Washington D.C. August 17, 2010

Dr. Byung K. Yi LG Electronics Mobile Research (LGEMR)

How to guarantee Interoperability over the Public Safety Network (1)

- Bundle the D-Block into Public Safety(?)
 - Bundling the D-Block into the Public Safety operated by the carriers would allow easier Inter-Operability
- How many operators should be selected to operate PS System(?)
 - Probably 3~4 operators
 - At most, 50 operators, but still hand-full EPS Vendors
- How to test Inter-operability(?)
 - Utilizing NIST Colorado Boulder IOT Lab
 - Or Third Party IOT Test Lab
 - Test Scenarios should be developed by the WGs
 - WG should be consist of PS Subscribers, PS Operators, Government, Device Supplier
 - Industry Association would take a role

How to guarantee Interoperability over the Public Safety Network (2)

- How to Operate the public Safety System(?)
 - Allow operators to run the LTE system over the spectrum combing their own spectrum with the PS Band spectrum
 - Strict priority service provisions for the PS users
- How to provide differentiated Security provisions
 - Using the UICC (Universal Integrated Circuit Card)
 - Using enhanced UICC for Public Safety Applications
 - Using two UICCs
- How to procure the networks and devices(?)
 - Somewhat Aggregated purchasing requires
 - Eliminate any special build nor special applications
 - Upgrade should be done throughout nation-wide
- Backward Compatibility to Legacy Networks, such as P25(?)
 - Cost would be incremental from the current p25 system

LG LTE IOT and Demo Sites

Newbury, UK

Fleet, UK

Velizy / Orvault, France

Bonn, Germany

Munich, Germany

Kista/Linkoping, Sweden

Oulu, Finland (NSN)

Anritus, Atsugishi

Ulm, Germany (NSN)

Korea

Ottawa

Boston

Murray Hill

Seattle

Indian Hill

патап пш

Dallas

LGE has 3 network/ 6 equipment partners world wide

QoS parameters can be used for public safety App

- Standards only define parameters related to QoS and their signaling. How QoS is maintained and enforced is based on implementation
- QoS parameters
 - For each EPS (Evolve Packet System: LTE+EPC) bearer
 - QoS Class Identifier (QCI)
 - Allocation and Retention Priority (ARP)
 - GBR: Guaranteed bit rate for a GBR bearer
 - MBR: Maximum bit rate for a GBR bearer. Currently spec only supports MBR=GBR
 - For multiple bearers
 - UE-AMBR (Aggregate MBR)
 - APN-AMBR (Access Point Name)

QCI

- A scalar that is used as a reference to access node-specific parameters that control bearer level packet forwarding treatment
- The parameter influence many implementation-specific parameters. e.g. scheduling weights, admission thresholds, queue management thresholds, link layer protocol configuration, etc.

QCI

QCI	Resource Type	Priority	Packet Delay Budget	Packet Error Loss Rate	Example Services
1	GBR	2	100 ms	10 ⁻²	Conversational Voice
2		4	150 ms	10 ⁻³	Conversational Video (Live Streaming)
3		3	50 ms	10 ⁻³	Real Time Gaming
4		5	300 ms	10 ⁻⁶	Non-Conversational Video (Buffered Streaming)
5		1	100 ms	10 ⁻⁶	IMS Signalling
6	Non-GBR	6	300 ms	10 ⁻⁶	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
7		7	100 ms	10 ⁻³	Voice, Video (Live Streaming) Interactive Gaming
8		8	300 ms	10 ⁻⁶	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file
9		9			sharing, progressive video, etc.)

ARP

- Used to decide whether a bearer establishment / modification request can be accepted or needs to be rejected due to resource limitations. The 3 components of ARP are:
- Priority level
 - Used to compare which bearer is preferred
 - 1 to 15
- pre-emption capability
 - Used to decide whether this bearer can drop other lower priority bearers
- Preemption vulnerability
 - Used to decide whether this bearer can be dropped to accommodate higher-priority bearers

AMBR

APN-AMBR

- limits the aggregate bit rate that can be expected to be provided across all Non-GBR bearers and across all PDN connections of the same APN
- Policed by PGW & UE
- UE-AMBR
 - Sum of the APN-AMBR of all active APNs
 - Policed by eNB

EPS bearers (GTP based S5/S8)

EPS bearers (PMIP based S5/S8)

UE vs. network initiated QoS

- UE initiated QoS
 - Application is running on UE, so UE naturally should provide QoS needed to the network
 - This requires a special API for the application to signal QoS to the modem. The application is not accessagnostic.
- Network initiated QoS
 - The network does not know what is the QoS needed by the application
 - However, if an application utilizes SIP, RTSP to negotiate QoS with network, the network will be able to initiate QoS needed for the application

Network initiated QoS

Source: M. Olsson et. Al., SAE and the Evolved Packet Core

Bearer establishment in LTE

- LTE supports both UE and network initiated QoS
- However, the decision to establish or modify a dedicated bearer can only be taken by the EPC
- UE only makes request for resource, PGW (GTP based S5/S8) or SGW (PMIP based S5/S8) decides whether it allocate a new dedicated bearer, or modify the QoS of the existing bearer to satisfy the request

Security/USIM related issues

- Using the existing USIM
 - A special APN can be used for public safety PDN connections
 - All operators need to provide access for this special PDN
 - Public safety personnel needs to contact his home operator to update the subscription profile for the special APN access
 - Either public safety authority relies on operators to authenticate the user, or other authentication functions are needed after public safety PDN connection establishment
- Using a separate USIM for public safety access
 - Device with one UICC containing one USIM app for public safety access
 - People need to carry 2 phones
 - Device with one UICC containing multiple USIM apps, one of them is for public safety access,
 - How does public safety authority coordinate with operators to issue the UICC?
 - Device with multiple UICCs, and one of them is for public safety access
 - For multiple USIMs on the same device
 - One USIM active at a time?
 - All active at the same time?
 - Dual transceivers needed?
 - "Dual USIM dual standby" with single transceiver?

Public safety network & PLMN

- Public safety network is a special PDN in HPLMN or VPLMN
 - Corresponds to the case "using existing USIM" in previous slide
 - The model is used for emergency call
 - Backward compatible to UE
- Public safety network is HPLMN
 - Corresponds to the case "Using a separate USIM for public safety access" in previous slide
 - The network providing the access is the VPLMN
 - Backward compatible to UE
- Public safety network is VPLMN
 - Corresponds to the case "Using a separate USIM for public safety access" in previous slide
 - Uses network sharing feature in LTE
 - A special PLMN id is defined for public safety
 - PLMN id not explicitly broadcasted. It is signaled by UE in RRC connection setup
 - Not backward compatible to UE

Thanks!